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This investigation is concerned with the numerical calculation of multiple solutions 
for a mixed-convection flow problem in horizontal rectangular ducts. The numerical 
results are interpreted in terms of recent observations by Benjamin (19784 on the 
bifurcation phenomena for a bounded incompressible fluid. The observed mutations 
of cellular flows are discussed in terms of dynamic interchange processes. Each 
cellular flow may be represented by a solution surface in the parametric space of 
Grashof number Gr and aspect ratio y ,  which is delimited by stability boundaries. 
Such a stability map has been generated for each type of cellular flow by a series of 
numerical experiments. Once these boundaries are crossed one cellular flow mutates 
into another via a certain dynamical process. Although the nature of the singular 
points on this map have not been determined precisely, a plausible general structure 
of the cellular-flow exchange process emerges from this map with several features in 
common with the Taylor-Couette flow. The primary modes appear to  exchange roles 
via the formation of tilted cusp. Other salient features such as primary-mode 
hysteresis and quasi-critical range for cellular development appear to be present. 
However no anomolous modes have been observed. 

1. Introduction 
The problem of buoyancy instability of an incompressible fluid layer was initially 

investigated by BBnard (1901), Rayleigh (1916), Jeffreys (1928), and Low (1929). In  
the theoretical work of Rayleigh, the horizontal fluid layer is assumed to be infinite 
in extent. The primary motion for such a simplified case is ut = 0, where ui are the 
velocity components. The stability of this simple primary motion could be studied 
analytically using linear stability theory. Subsequently, the effect of lateral bounding 
walls has been examined, using both linear and nonlinear theories, by Drazin (1975), 
Daniels (1977), Hall & Walton (1977) and Daniels (1984). Other related contributions 
to the Rayleigh-BBnard type of convection include Platten & Chavepeyer (1975), 
Behringer & Ahlers (1982) and Daniels (1981). All of these studies observed hysteresis 
over certain ranges of flow parameters. Cliffc & Winters (1984) have shown that 
BBnard convection in tilted cavities can be represented by the one-sided bifurcation 
for 0 =+ 0 (i.e. the angle of inclination from the horizontal). Pitchfork bifurcation 
occurs at one section of the cusp and is unstable to  a symmetry-breaking perturbation. 
A numerical study of pure-natural-convection flows in slender vertical slots was also 
carried out by Lee & Korpela (1983). Dual solutions and multicellular pattern was 
observed. 

In  this work, we study the combined free- and forced-convection heat transfer in 
a horizontal rectangular tube with axially uniform heat flux and bottom heated-top 
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insulated peripheral thermal boundary conditions. This problem is of interest to 
mechanical and chemical engineers because of the presence of both the free and forced 
convection mechanisms in heat exchangers. The condition of axially uniform flux can 
be realized with an electrically heated duct. For the peripheral boundary condition 
a number of variations have been studied both experimentally and theoretically. 
Among the theoretical works, Morton (1959), Paris & Viskanta (1969) and Iqbal & 
Stachiewicz (1966, 1967) have all used a perturbation approach to study the effect 
of free convection on forced-convection heat transfer. Cheng & Hwang (1969), Hwang 
& Cheng (1970), Patanker, Ramadhyani and Sparrow (1978), Chou & Hwang (1984) 
and Nandakumar, Masliyah & Law (1985) have used a finite-difference method to 
examine the effect of a stronger free-convection mechanism. Experimental studies 
of the mixed-convection problem have been carried out by Hwang & Liu (1976), 
Hattori & Kotake (1978), Yousef & Tarasuk (1981), Osborne & Incropera (1985) and 
Courier & Grief (1985). These studies have revealed the existence of longitudinal rolls 
and heat-transfer enhancement of up to five times that associated with pure forced 
convection. Early work revealed a flow structure with twin counter-rotating vortices 
caused by buoyancy force and superimposed on the pressure-driven axial flow. First 
evidence of a transition to a four-cell pattern was contained in the work of Patankar 
et al., for a circular duct with non-uniform heating. They identified a modified Grashof 
number as the only true dynamical parameter for this problem and observed the 
two-cell and four-cell pattern for the case of a non-uniform bottom-heated boundary 
condition. This phenomenon was later confirmed by Chou & Hwang (1984) for a 
rectangular geometry with uniform heating. But none of these studies revealed dual 
solutions and hysteresis behaviour. In  a recent work by Nandakumar et al. (1985), 
a similarity among the mixed-convection flow and the pressure-driven isothermal 
flow in coiled ducts (the Dean problem) and the flow between rotating cylinders (the 
Taylor problem) was observed. It was shown that dual solutions and hysteresis 
behaviour are possible for both circular and rectangular geometries and for both 
uniform and non-uniform heating. 

Recent studies on Taylor-vortex flow by Benjamin (1976, 1978a,b,c), Benjamin 
& Mullin (1981, 1982), Mullin (1982), Cliffe (1983) and Cliffe & Mullin (1985) for a 
finite geometry and by Meyer-Spasche & Keller (1985) for an infinite geometry with 
periodicity have demonstrated a very rich solution structure for that problem. Salient 
features of the solution structure are: (i) profuse multiplicity, (ii) anomalous modes 
with an odd number of cells or even cells with an odd sense of rotation, and (iii) 
complex bifurcation diagrams in the parameter space of aspect ratio and Taylor 
number. It is recognized that the mixed-convection problem under study belongs to 
a general class of wall-bounded instability problems which include the Taylor-vortex 
problem, the BBnard problem and the Dean problem. We shall show the presence of 
a rich structure of multiple solutions not previously demonstrated for the mixed- 
convection problem. 

2. Governing equations 
The equations of motion in the stream-function vorticity form are given below for 

fully developed laminar flow in a horizontal rectangular tube. The transient terms 
are included because a pseudotransient method is used to obtain the stationary 
solutions. The coordinate system and the orientation of the gravity vector are shown 
in figure 1. 

va$b = -a ,  (1) 



Mixed-convection heat transfer 34 1 

Insulated 

I - b - 4  

FIQURE 1.  Duct geometry and coordinate system. Aspect ratio y = b/a. 

a52 a$ -+(V*V)Q = VW+G?--, 
at ax 

Z + ( V . V ) w  = v2w+1, 
at 

where 

In (4) (w) is the mean axial velocity, averaged over the flow cross-section. The viscous 
dissipation and compressibility effects in the energy equation are neglected. The 
Boussinesq approximation is invoked to account for the temperature variation of 
density in the body force term. The thermal boundary condition is for axially uniform 
heat flux with the top half of the pipe insulated and the bottom half maintained at 
a uniform temperature at any axial station. This peripheral boundary condition is 
more readily realizable than the alternative condition of the top being insulated and 
bottom at uniform flux. It has been attained in the recent experimental work of 
Osborne & Incropera ( 1985) on mixed-convection heat transfer between parallel 
plates in the entrance region. The equations have been rendered dimensionless as 
follows : 

U’ V’ W‘ u=- v=- w =  
v / a  ’ v / a  ’ ( - dP’/dZ’) (a2//ru) ’ 

Following Patankar et al. (1978), the modified Grashof number, 15% = Q‘g/?a2/kv2 is 
used to characterize the natural-convection effects instead of the conventional 
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(Re,Ra) group as used by Cheng & Hwang (1969). These two numbers are related 
by, Re Ra = 8Gr. The Q’ in the above definition is the heat transfer rate per unit length 
of the tube given by Q’ = pCPA (w’) (aT/az), A is the flow area, Cp is the specific 
heat of the fluid, T ,  is the wall temperature, g is the gravitational constant, B is the 
thermal coefficient of expansion, k is the thermal conductivity, and v is the kinematic 
viscosity. The boundary conditions for the stream function and vorticity arise out 
of imposing the no-slip condition on the wall. No symmetry boundary condition was 
imposed along x = 0 in anticipation that odd-cell modes may be possible for the 
problem. 

The thermal boundary conditions are 

an (5a) 

$ = 0 for the heated wall. (5b) 

- _  ” - 0 for the insulated portion of the wall, 

Once the flow and temperature fields satisfying the above conditions are obtained, 
a macroscopic force and energy balance provides the Fanning friction factor and the 
heat-transfer coefficient, which are of engineering importance, but can also serve as 
state functions useful in discriminating between multiple solutions. They are given 

where Re is the Reynolds number and f is the Fanning friction factor. The average 
Nusselt number is calculated from 

where ($b) is the dimensionless bulk mean temperature. The Nusselt number and 
Reynolds number are based on the equivalent diameter, 

4ab 
(a+b)’ 

D, = - 

3. Method and accuracy of solution 
Equations (2)-(4) were cast into a finite-difference form by using central difference 

for the time derivatives, the Arakawa (1966) method for the convective terms, and 
the DuFort & Frankel (1953) method for the diffusive terms. The Arakawa method 
has a formal truncation error E of O(At2, Ax4, Ay4) and identically conserves $2, Q2 

and the kinetic energy u2+w2, which, as pointed out in Roache (1972), make it 
especially suitable for hydrodynamic instability problems. This scheme has been used 
by Lee & Korpela (1983), Wirtz & Liu (1975), Horne & O’Sullivan (1974), Quon 
(1972), and Festa (1970) in natural-convection studies. 

Equation ( 1 )  is of the form of the Poisson equation and is discretized using 
second-order central-difference approximations. The resulting set of algebraic equa- 
tions were solved using the Gauss-Seidel method with successive over-relaxation. 
The majority of the calculations were carried out with 21 grids in the vertical direction 
and up t o  201 grids in the horizontal direction. Lee & Korpela (1983) used the Courant 
condition to  obtain suitable time-steps. In  this study, i t  was found that the 
appropriate At is 1 x for low 6% and 7 x 1 0 - 4  for up to Gr = 25000. The number 
of time-steps required to reach steady state depends on the initial state, the y-value, 
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the grid mesh, and whether a change in cellular mode is involved. For example, at 
(Gr, y )  = (15000,6.0), with a mesh of 121 x 21,4000 steps were required to reach the 
steady four-cell flow from the initial four-cell flow at (Gr, y )  = (10000, 6.0) when 
At = 7 x was used. The convergence criteria for steady flow are that the Nusselt 
number and fRe-value do not change by more than 1 x over 500 time-steps 
and that the average residuals for stream function, vorticity, axial velocity, and 
temperature are monotonically converging over time. Computations were done using 
an Array Processor FPS-164 attached to an Amdahl 5860 main frame. Double- 
precision arithmetic was used throughout and the computational time per time-step 
was 0.84 ms of central-processor time per grid point. 

As for the grid-mesh requirement, at  least 15 grid points per cell were provided, 
although rectangular grids were used for large aspect ratios. To test the adequacy 
of grid resolution, an 81 x21 grid and a 121 x 21 grid were respectively used in 
computing the four-cell flow at (Gr, y )  = (15000, 6.0). It was found that the fRe- 
values agreed to within four significant figures at  21.49, whereas (Nu) changed 
from 6.448 to 6.461, which was a difference of about 0.2 yo. Lee & Korpela (1983) used 
an identical numerical scheme on a pure-natural-convection problem and tested the 
grid sensitivity using 9 x 9,17 x 17 and 33 x 33 grids. They found 17 grid points across 
the narrow side of the duct to be adequate to resolve the cellular flows. Our experience 
with a few test cases confirms their observation. 

Another aspect of our numerical study is concerned with identifying the stability 
boundaries of each type of cellular flow in the parameter space of aspect ratio and 
Grashof number. This is achieved using a bisection method in the following manner. 
Starting with a converged steady solution with a certain number of cells at a given 
(7, Gr),  one of the parameters (say Gr) is changed by small increments until the cellular 
pattern loss stability and converges to a steady solution with a different number of 
cells. Both the initial and final steady solutions (i.e. at two different parameter values) 
are subject to the same stringent convergence criteria outlined earlier. However, the 
range of parameter values over which the flow transition occurs is further refined by 
interval halving. While this scheme is conceptually simple to implement, it is 
computationally very demanding. Hence the stability boundaries have not been 
determined with very high precision. The bisection method was continued until the 
uncertainty in the Grashof number was reduced to 5 yo and that in the aspect ratio 
was reduced to f 0.05. More recently efficient numerical methods using a continuation 
method and extended systems have been used by Cliffe (1983) for the Taylor problem 
and by Winters & Brindley (1984) for the Dean problem. Winters & Brindley 
computed the critical Dean number for a semi-circular duct to be 105.6 using the 
continuation method. This is in excellent agreement with an earlier prediction of 
105 by Masliyah (1980) using the bisection method. Hence the stability boundaries 
determined by the bisection method are reliable. However it appears that a deeper 
insight can be gained about the nature of the instability by using the extended 
systems. 

4. Results and discussion 
The numerical investigation is directed along two lines. First, the effect of aspect 

ratio on the flow behaviour is examined, and secondly, the range of stability of a few 
cellular modes is studied. Stability boundaries have been determined from numerical 
experiments and the results are interpretated as plausible bifurcation structures 
observed for similar problems. 
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FIGURE 2. Friction-factor variation with aspect ration indicating multiple solutions at 
Cr = 15000. 

4.1. Effect of aspect ratio 
The numerical experiments were performed initially for a number of aspect ratios y ,  
while the Grashof number and Prandtl number were kept a t  15000 and 0.73 
respectively. A steady-state solution of cellular flow for each aspect ratio was then 
obtained by forward time marching. A number of cellular modes were thus generated, 
each a t  a particular y. It was found that for aspect ratios of 4, 6, 8, 12 and 16, such 
impulsive sta.rts cause the formation of two-cell, four-cell, six-cell, ten-cell, and 
twelve-cell modes respectively. At this point, the term ‘impulsive start ’ needs to be 
qualified. At time zero, a hydrodynamically developed axial velocity profile was used 
with the cross-stream velocity components equal to  zero (no natural convection). The 
thermal boundary conditions together with governing equations were imposed for 
t 2 0. The solution is for a fully developed section far downstream from the thermal 
entrance region. Thus, an impulsive start refers to the imposition of a fixed Grashof 
number (150OO in our case) for t 2 0 on an initial flow profile corresponding to Gr = 0. 

Once the cellular modes were established, the stability limits were obtained by 
varying the aspect ratio. Owing to  the computational effort required, the range of 
aspect ratios studied is limited to between 4 and 16. The steady-state solution at a 
particular aspect ratio is used as the initial condition which is again time marched 
to  a new steady-state solution a t  the current y .  A critical point is reached beyond 
which the particular cellular mode becomes unstable. As this point is approached, 
small increments of y were used so that i t  may be located accurately. The six-cell 
mode may be considered as an example. Initially a steady-state solution of six-cells 
is established at an aspect ratio of 8. This is then both increased and decreased to 
search for the upper and lower limits of stability. It was found that these limits were 
at y = 13.7 and 6.9 respectively. Thus, the state curve for the six-cell mode delimited 
by the two limit points may be drawn for certain representative functionals of the 
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FIGURE 3. Nusselt-number variation with aspect ratio at Cr = 15000 

problem. The friction factor f Re, and the average Nusselt number (Nu) for the 
various modes are shown in figures 2 and 3. For a particular cellular flow, the friction 
factor is not a strong function of aspect ratio. However, its value increases as the 
number of cells increases. The Nusselt number decreases with increasing y for a 
cellular mode, but increases with the number of cells for a particular value of y. In 
the region tested, there is one cross-over of Nusselt-number-state loci. It occurs at 
the lower range of the fourteen-cell mode. Below the cross-over, the twelve-cell mode 
will have higher Nusselt-number values. The upper stability limits for the eight-cell, 
ten-cell, twelve-cell, and fourteen-cell modes were not located since they were beyond 
y = 16, which was the chosen upper bound of the current investigation. 

It is seen in figures 2 and 3 that multiple steady-state solutions can exist for one 
set of parameters (Cr, y ,  Pr). For the range of aspect ratios tested, up to  four isolated 
solutions can exist. For the chosen fluid (Pr = 0.73), these represent four isolated 
points in the state function (Cr, ?)-parametric space which project onto a single point 
in the (Gr, ?)-plane. One such instance (y = 15) is shown in figure 4 in which the 
stream function, axial velocity, and temperature contours are plotted. It is noted that 
the interior cells are approximately of the same size, with the boundary cells almost 
twice their length. The convection cells have the effect of creating a series of 
alternating hot and cold regionst in the bottom portion of the duct. These correspond 
respectively to the upward- and downward-flow regions. In  the upward-flow regions 
heat is effectively convected away from the heated boundary, whereas the downward 
flow pushes fluid against the bottom heated boundary. As will be discussed later, 

t The primary concern here is the temperature variation in the r-coordinate direction. Hence, 
the hot and cold regions refer to the local maximum and minimum of temperature along a horizontal 
plane. 
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Stream function 

(4 
FIQURE 4. Stream function, axial velocity and isotherms for four steady solutions with (a) eight 

( b )  ten, (c) twelve and ( d )  fourteen cells at y = 15 and Cr = 15000. 

this has some subtle consequences on a certain form of the observed bifurcation 
phenomena. The locus of maximum axial velocity along each vertical line becomes 
sinusoidal, being shifted upward or downward by the cellular circulation. 

The stream function, isotherms, and axial-velocity contours for the six-cell mode 
for a series of aspect ratios are shown in figure 5.  As the aspect ratio increases, the 
end cells become bi-focal, with a saddle-type stagnation point developing in the 
centre of the end cells. While the profiles shown in figure 5 represent stable solutions, 
the stability limit for six-cell solutions at a fixed Gr of 15000 is between 6.9 and 13.7. 
Hence any further small increase in the aspect ratio (to say 13.8) sets a dynamic 
process in motion where one additional cell germinates at  the lower plate near the 
region labelled d and can grow easily into the stagnation region, thus dividing the 
end cell. These bi-focal end cells are responsible for the end-cell-type mutation which 
always results in an increase of four cells. The sharing of space between the interior 
cells and the end cells as y is varied is shown in figure 6. The ratio h,/h,, where he 
is the average end-cell length and h, is the average interior-cell length, is plotted 
against y for a number of cellular modes. Away from the limit points, for the lower 
cellular modes (four-cell, six-cell, and eight-cell), the end-cell length increases at  a 
lower rate than the interior-cell length with increasing y ,  i.e. h,/h, decreases with 
y. The rate of decline lessens with the increasing number of cells. For the ten-cell 
mode, this trend is only marginally observable, and for the twelve-cell and the 
fourteen-cell modes, it  is reversed. Close to the critical points, h,/h, increases with 
y. This corresponds to the cellular adjustment prior to the end-cell-type bifurcations. 

4.2. Cellular-jlow adjustment 
Whenever multiple solutions were possible at a given set of parameter values, the 
mode selection would depend on the initial condition and the type of excitation 
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FIQURE 5. Flow field for the six-cell mode at Gr = 15000 as the aspect ratio is increased. 

imposed on the system via a change in either one or both of the parameters. This 
will be demonstrated with two examples. In  the first case, the converged four-cell 
mode at  y = 9.5 and Gr = 10000 is taken as the initial condition. A new solution is 
sought by changing y to 10.0 at  t = 0. In the second case, a converged four-cell mode 
at y = 10.0 and Gr = 15000 is taken as the starting point whereby Gr is reduced to 
10000 at t = 0. Hence, both processes have the same end state (Gr = 10000, 
y = 10.0), both cross the upper-limit curve for the four-cell mode (see figure 10 which 
illustrates the stability limits for each cellular flow and it will be discussed in some 
detail later), but they give rise to two different cellular modes; an eight-cell mode 
for the former case, and a six-cell mode for the latter. 

The flow and temperature profiles for the first case are shown in figure 7. The bi-focal 
end cells, which are stable at y = 9.5, begin to sever at  the middle where a stagnation 
zone has developed. The flow on either side of this zone has the same sense of rotation. 
The condition is stabilized by the germination of a counter-rotating vortex in between 
these two cells. The mutation is completed by the eventual adjustments of these new 
cells with the existing cells to form anew steady-state flow. Since this process involves 
the mutation of the end cells, i t  will be referred to as the ‘end-cell-type’ mutation. 
It should be noted that the slight asymmetries observed in figure 7 are an artifact 

12 FLM 177 
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FIQURE 6. The variation of the ratio of end-cell length to interior-cell length with aspect ratio 
at ch. = 15000. 

of the explicit numerical scheme. As the transient effects die down, symmetry is 
restored. 

The second case, shown in figure 8, goes through a rather interesting mutation 
process. The starting steady flow is similar to the former case, but this time Gr is 
changed from 15000 to 1OOOO. Initially, the end cells respond in the same manner 
by elongating and severing in the middle. However, another peculiar process is 
concurrently proceeding at  the bisector of the pipe section. The reduction of Gr 
weakens the upward flow near the centre because of the parallel reduction in 
buoyancy force, which allows the accumulation of heat at that spot. This combination 
of events causes the formation of another vortex pair which eventually strengthens 
and suppresses the ‘end-cell-type ’ mutation. As a result, the four-cell mode mutates 
into a six-cell mode at which a steady state is established through a final cellular 
adjustment phase. Since mutation in this case occurs a t  an interior warm region, it 
may be referred to as the ‘interior-hot-spot-type ’ mutation. The vertical velocity 
decreases at the bisector and then collapses to a local minimum. It is noted that the 
downward-flow regions are not significantly affected by the reduction in Gr. The lower 
stability limit for the ten-call mode is y = 11.0 at Gr = 15000. Therefore, it is likely 
that the ten-cell mode is not stable at  Gr = 1OOOO and y = 10.0. Otherwise for a large 
change in parameter values, it is possible for both of the processes to carry through 
to completion, thus forming a ten-cell mode. Such processes have been observed for 
a sufficiently large change in parameter values. However for small changes in 
parameter values across stability boundaries, the change in the number of cells occurs 
either through the end-cell or interior-cell mutation. 

Note that when there are six cells, the warm region with upward flow does not occur 
at  the line of symmetry (as with four-cell flow), but is located at  the first cellular 
boundary away from the bisector. There are two of these regions, one on each side 
of the bisector. One such example is shown in figure 9. The initial state corresponds 
to a steady six-cell mode at Gr = 15000 and y = 13.5 and the Gr is reduced to 10000 
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FIQURE 7. Flow field illustrating an end-cell type of bifurcation from a four-cell to an eight-cell 
pattern at ch. = loo00 when the aspect ratio is changed from 9.5 to 10.0. 

at t = 0. A pair of cells germinate and grow in each upward-flowing warm region in 
the interior of the duct. Both vortex pairs thus formed remain stable and the six-cell 
mode evolves into a ten-cell mode. 

4.3. Quasi-critical range of Crashof number 
As pointed out earlier, the effect of lateral bounding walls on the cellular-flow 
evolution in the pure-natural-convection problem has been studied by Hall & Walton 
(1977), Daniels (1977, 1984) and Cliffe & Winters (1984). Hall & Walton (1977) have 
shown that, for slightly imperfect insulators as vertical boundaries, the concept of 
sharp bifurcation at a critical Rayleigh number is not tenable and that the onset 

12-2 
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FIGURE 8. Flow field illustrating an interior-cell type of bifurcation from a four-cell to a six-cell 
mode at y = 10 as Gr is changed from 15000 to 10000. 

of convection is smooth. Cliffe & Winters (1984) have considered the effect of angle of 
inclination 0 for the same problem. They have shown that, for an adiabatic endwall, 
a pitchfork bifurcation occurs for 6 = 0, but the cellular evolution is smooth for 
8 =k 0. In both cases, the critical behaviour is removed by the presence of a horizontal 
temperature gradient. In  the mixed convection problem, a horizontal temperature 
gradient will always be present because of the forced-convection term (w/4y(w)) in 
(4). Thus two endcells will always be present even if the vertical walls are perfect 
insulators - the cells, however, may be much weaker than for the present boundary 
conditions. The same can be expected whether the bottom wall is maintained at 
constant flux or constant temperature. The only exception to this is when the vertical 
walls are insulated and the top and bottom walls are maintained at constant (but 
different) temperatures. Then, in the fully developed region, there is no net axial 
convection and the forcing term in (4) becomes zero. The forced convection then 
becomes uncoupled from the natural convection and the results of the BQnard 
problem then became applicable. A smooth development of cells is also observed in 
both the Taylor and Dean problems. 

In the present problem, as Gr is gradually increased, two cells are always observed. 
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FIGURE 9. Flow field illustrating an interior-cell type bifurcation from a six-cell to a ten-cell 
mode at y = 13.5 as Cr is changed from 15000 to 10000. 

When the aspect ratio is large, they are confined to the ends. Interior cells begin to 
take shape as Gr is increased through a quasi-critical range. 

In figure 10, the incipient germination of interior cells is shown as the dashed curve 
BE. This curve does not represent the locus of any critical or limit point; it  merely 
indicates the zone of interior-cell development. This curve may be subdivided into 
segments, each corresponding to a particular primary cellular mode. For example, 
between y values of 6.5-8.7, when Cr is increased through the quasi-critical range, 
the four-cell mode is formed. Between y values of 8.7-1 1.8 the six-cell mode will be 
formed, and so on. It is found that for the cases tested, the primary modes always 
have an even number of cells and they differ from the adjacent primary modes by 
2. This study did not reveal any of the anomalous modes (odd-cell modes) demon- 
strated by Benjamin & Mullin (1981) in their Taylor-vortex experiments. No special 
effort was made to realize such anomalous modes in our numerical experiments. At  
present, it is not known whether stable odd-cell modes can be obtained numerically 
for this problem, or whether they are physically realizable. However, an experimental 
study of natural-convection flow in enclosures of moderate aspect ratio by Linthorst, 
Schinkel & Hoogendoorn (1980) has demonstrated that only even-cell flows are 
possible. 

The Nusselt number and f Re-values for a number of aspect ratios are shown in 
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FIQURE 1 1 .  Friction-factor variation with Gr for various values of y through the 
quasi-critical range. 
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FIQURE 12. Nusselt-number variation with c7 for various values of y through the 
quasi-critical range. 

figures 11 and 12. The change in these functionals through the quasi-critical range 
is gradual. (This is especially true for the lower aspect ratios.) This further confirms 
that the development of a particular primary mode is not instantaneous, and that 
there is no exact critical value of Grashof number as such at which buoyancy 
instability overcomes viscous effects. 

4.4. Primary-mode exchnge process and cusp catastrophe 
The stability boundaries for the two-cell, four-cell, six-cell, and eight-cell modes are 
shown in figure 10. For each mode, there are two limits, which will be called the upper- 
and lower-limit curves. The former refers to the locus where a particular cellular flow 
becomes unstable if the y-value is exceeded. Similarly, the latter refers to the locus 
where a particular cellular form becomes unstable if the y-value is further reduced. 
The upper boundary for the eight-cell mode is not located in this study. 

Figure 10 can be thought of as the two-dimensional projection on the (Cr, y)-plane 
of the edges of a surface representing the state of the system as a function of the 
control parameters Gr and y. This stability map is incomplete in the sense that 
unstable solution branches as well as the type of singularity could not be determined 
with the present numerical method. Such solutions can be obtained by using the 
continuation method together with certain extended systems to determine the type 
of singularities (see Cliffe 1983 and Keller 1977). Nevertheless, figure 10 provides some 
useful information in interpreting the cellular-mode exchange process in the context 
of bifurcation phenomena. 

As a stability boundary is crossed, a particular cellular flow mutates into a different 
one by switching on to another surface. In certain regions of the parameter set several 
such stable solution surfaces can exist. Therefore, loss of stability of a 2N-cell mode 
does not necessarily mean the formation of either a 2 ( N +  1)-cell or a 2(N-1)-cell mode. 
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As illustrated previously, a jump of two or four or six cells is possible. For a situation 
where only the aspect ratio is adjusted through a stability boundary, the ‘end- 
cell-type’ mutation, resulting in a jump of four cells dominates. The ‘interior- 
hot-spot-type ’ change occurs when Gr is reduced through a stability boundary and 
can result in a jump of two, four or 2N cells depending on the number of hot regions 
above the bottom wall. Other modes of mutation, which have not been observed in 
this study, may be possible. In  the earlier study by Nandakumar et al. (1985), a 
‘cold-spot-type’ bifurcation was found, in which case two cells germinate in the cold 
downward-flowing region (the vertial bisector) above the bottom wall. This process 
occurs a t  a very high Grashof number (about 225000 a t  y = 1) and the resulting cusp 
points away from the y-axis. We have not observed a similar process in the present 
study. At higher values of Gr the flow tends to  oscillate. A brief interpretation of the 
exchange process across the stability boundaries is presented below in the context 
of bifurcation structures observed for similar problems. 

For parametric values (Gr, y )  below curve BA, only the two-cell mode is found to 
exist. To the right of BA, the four-cell mode is secondary and may be obtained by 
an impulsive start. To the right of curve CD, the two-cell mode is secondary. If Gr 
is increased gradually a t  a y-value between that of B and C it exhibits two-cell flow 
to the left of BA until BC is reached, a t  which point i t  jumps to a four-cell mode. 
It remains stable upon further increase of Gr. However, i t  will collapse to  a two-cell 
mode as the bifurcation curve BA is crossed by gradually reducing Gr. This 
phenomenon is known as the primary-mode hysteresis which is typical for primary- 
mode exchange process. Thus the stability boundaries BA and BCD can be interpreted 
as forming a tilted cusp bounding (Gr, y)-values where both cellular modes are 
possible. 

The four-cell to  six-cell transition occurs between y-values of 8.5 and 8.7. I n  the 
region bounded by FG,H, and a constant y-line through F, the six-cell mode is 
secondary and collapses into four-cell flow when Gr is reduced. Four-cell flow may 
exist as the secondary mode above this region. However, as Gr is reduced through 
curve GI, it collapses into a six-cell flow. Primary-mode hysteresis occurs when Gr 
is increased gradually a t  an aspect ratio betwen 8.5 and 8.7. I n  this instance, the 
four-cell mode transforms into six-cell mode when FG is reached. The six-cell mode 
thus formed collapses back into four-cell flow only when Gr has been reduced below 
curve FG,. This primary-mode exchange process again appears to  take place through 
a cusp, though the hysteresis is much less pronounced compared to  the two-cell to  
four-cell transition. 

The last cusp region investigated is the six-cell to eight-cell transition. To the right 
of curve KIL, the eight-cell mode exists as a secondary mode. It mutates to a six-cell 
flow below curve K I  and a four-cell flow below curve IL. Six-cell flow is stable up 
to curve KL,MN. Above curve KL,M, six-cell flow mutates to  an eight-cell flow, 
whereas above curve MN ten-cell flow will form when the aspect ratio is further 
increased. Primary-mode hysteresis occurs between aspect ratios of 10.9 and 11.8 
through the tilted-cusp region IKL,, which is substantially larger than the four-cell 
to six-cell cusp. 

There is one rather interesting point about the shape of the four-cell upper-limit 
curve FGIJ. It exhibits a local maximum at I where it is bisected? by the eight-cell 
lower-limit curve KIL. To the right of curve KIL, the four-cell mode changes into 

t Since these bifurcation curves are isohted in the functional space, it  is their projections on 
the (Gr, y)-plane which are bisecting one another. 
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the eight-cell mode via the ‘end-cell-type’ mutation when curve IJ is crossed by 
increasing the y-value. However, the eight-cell mode is unstable to the left of curve 
KIL, and the four-cell mode mutates into the six-cell mode when the y-value is 
increased beyond curve FGI. Hence, the four-cell upper stability limit FGIJ may be 
subdivided into two segments at point 1, each representing a particular mutation 
process. A similar behaviour occurs where the two-cell upper stability limit BCD 
bisects the six-cell lower stability limit FG, H a t  G,. Along curve G, H, two-cell flow 
is formed when the y-value of an  initial six-cell flow is reduced, whereas along curve 
FG, and HH,, a four-cell flow is generated. 

5. Conclusions 
Following the lead of Benjamin (1978a) in the investigations of boundary effects 

on the Taylor-vortex instability problem, the mixed-convection heat-transfer prob- 
lem in rectangular tubes has been studied numerically, recognizing the fact that  
these problems are similar and will exhibit certain similarities of solution behaviour. 
We can summarize the findings of this investigation as follows. For rectangular ducts 
of finite aspect ratios, the appearance of cellular flows via buoyancy instability is 
gradual and that there is no precise critical value of Gr a t  which such development 
occurs abruptly. There is one primary mode that may survive as Gr approaches zero. 
Other cellular flows can exist a t  that aspect ratio as secondary modes which collapse 
to  other modes at their stability boundaries. The cellular flows observed in this study 
are even-cellular modes. None of the odd-cell modes that were observed in Benjamin 
& Mullin’s (1 981) Taylor-vortex experiments were established. The primary modes 
appear to exchange roles via a cusp region. Below the quasi-critical range, only end 
vortices are present. For the three transitions located (two-to-four-cell, four-to- 
six-cell, and six-to-eight-cell), they follow qualitatively the sequence of events 
observed by Benjamin. For the range of parameters studied Gre (1O00, 25000) and 
Y E  (4, 16), up to  four stable solutions can exist for a parametric set (Gr, y). It is to 
be expected that multiplicity will increase with increasing y-value. Two mutation 
processes, viz. the ‘end-cell-type ’ and the ‘interior-hot-spot-type ’ mutation have 
been observed. 
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